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We explore the statistical properties of a model proposed by Dukowin for calculating the 
dispersion of spray droplets due to turbulent gas motions. The distributions of turbulent 
velocity and position changes are derived, making no assumptions concerning the relative 
magnitudes of the drag time, turbulence correlation time, and the time at which the distribu- 
tions are evaluated. We also tell how the model is implemented in the computer program 
KIVA and give some computational examples. 0 1989 Academic PWS, hc. 

I. INTRoDUC~~N 

In introducing his particle model for calculating liquid sprays, Dukowicz [ 1 ] 
also proposed a method for calculating the dispersion of the spray droplets by 
turbulent gas motions. The purpose of this paper is to explore some of the 
statistical properties of this turbulent dispersion model and to tell how we have 
implemented it in the KIVA [2] computer program. According to the method of 
Dukowicz, we add to the mean gas velocity II, a fluctuating component u’, where 
each component of u’ is distributed according to the Gaussian 

q+1 -$ . &Texp ( ) 
In (l), c is the standard deviation: 

u=$m (2) 

where Q is the gas turbulent kinetic energy. Dukowicz proposed taking u’ to be a 
piecewise constant function of time, changing discontinuously after each passage of 
the turbulence correlation time t,. The time t, corresponds physically to an eddy 
breakup time or to a time for a droplet to traverse an eddy. 

The sum u + u’ is then the gas velocity that the droplet “sees” and that is used 
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in computing the momentum transfer between the droplet and the gas. More 
precisely, the acceleration of a droplet is given by 

dv 
p(u+u’-v)+g, (3) 

where v is the droplet velocity, g the acceleration due to gravity, and A is the drag 
function. For liquid droplets in a gas one can use, with sufficient accuracy [3], 

where pg and pI are the gas and liquid densities, r is the droplet radius, and cD is 
the drag coefficient. 

In conjunction with particle methods for calculating sprays, this model for the 
turbulent dispersion of droplets is now almost universally used [47]. The main 
differences in the proposed formulations are in the methods for choosing the tur- 
bulence correlation time t,. Although interesting and important, we will not deal 
with this question here. 

The question that motivates this paper is the following. How do we solve (3) in 
numerical calculations when the computational time-step At is larger, possibly by 
several orders of magnitude, than t,? This question is not addressed in Ref. [ 1 or 
4-71. When At < t,, we can solve (3) directly by finite difference approximation and 
thereby account for such effects as nonlinearity due to dependence of A on the 
relative velocity. When At > td, direct solution of (3) using time-step At is no longer 
possible because more than one value of u’ is “seen” by a droplet in time At. One 
approach to this problem is to simply restrict At to be smaller than td and solve 
(3) directly. This approach would be computationally inefficient, however, in 
circumstances where we could, in the absence of this time-step restriction, compute 
with At much larger than td. This is because the equations would have to be solved 
At/t, times more often to compute to a given problem time. To remedy this 
inefficiency one might consider a time-step splitting method in which the droplet 
equation of motion (3) is solved with a time-step dt that is less than t,, and the 
gas-phase equations are solved with longer time-step At. While more attractive than 
the first approach, a time-step splitting method will still be inefficient when At is 
much larger than t,, because then one must choose a fluctuating velocity u’ and 
solve Eq. (3) at least At/td times for each gas-phase time-step At. 

When At > t,, the solution method we propose involves choosing random 
velocity and position changes for each droplet from probability distributions that 
we will derive for the droplet turbulent velocity and position changes. Thus, inde- 
pendent of how small td is relative to At, our method requires the choice of only 
two random numbers for each droplet and each time-step At, one to determine its 
turbulent velocity change and one to determine its turbulent position change. 

To simplify the analysis, the turbulent distributions will be derived assuming the 
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parameters A, Q, and fd are constant for a given droplet during the time interval 
dt. The assumption that Q and td are constant for time At will be approximately 
satisfied in our numerical calculations. This is because droplets usually travel no 
more than one cell size Ax in the time At. Thus, assuming the turbulence field is 
well resolved by the numerical calculation, Q and t, will be nearly constant and 
equal to their values in the computational cell in which the droplet is located 
during the time-step. 

Assuming A is constant will certainly introduce some errors in practical spray 
calculations, but including the effects of a nonlinear drag law will be very difficult. 
The drag function A is constant if the drop Reynolds number 

Re=2P,lu+u’-vlr 

47 

is small compared to unity, where pg is the gas viscosity. In this so-called Stokes 
regime [ 33, 

cD = 24/Re, (6) 

which, combined with (4), gives A constant. Although many droplets will be small 
enough that Re < 1, in practical sprays Re can be as large as 1000 [3]. For large 
Reynolds numbers cD is nearly constant, and a quadratic drag law would be more 
appropriate. There appears, however, to be no alternative to the assumption of a 
linear drag law because use of a nonlinear law renders intractable the problem of 
deriving probability distributions for droplet turbulent displacements. We point out 
that the errors incurred in making this assumption are confined to the calculated 
turbulent displacements of droplets whose correlation times td are less than At and 
for which Re k 1. 

Using these assumptions, we first derive for the Dukowicz model the distribu- 
tions of droplet turbulent velocity and position changes. No assumptions are made 
concerning the relative magnitudes of the drag time l/A, the turbulence correlation 
time fd, and the time t = At at which the distributions are evaluated. Under the 
additional restrictive assumptions that t B l/A and t $ t,, it is shown that the 
distribution of drop turbulent displacements x’ in each coordinate direction is 
Gaussian with variance of, = 02ttd and depends on the drag function A only 
through the dependence of td on A. Since a distribution that follows a diffusion law 
has 02, = 2Dt, where D is the diffusion coefficient, droplets spreading obeys a diffu- 
sion law with diffusion coefficient D = $J’?, under the very restrictive assumptions 
that Q, td, and A are constant for times t >> l/A and t $ f& 

We next derive the conditional distribution of droplet turbulent position changes, 
given that the turbulent velocity change is known. This result is used to derive a 
general criterion for neglecting droplet turbulent velocity changes in numerical 
calculations. We show in particular that in numerical calculations with time-step 
size At, if At 9 l/A and At B td then to calculate accurately the turbulent diffusion 
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of a droplet in physical space, one can neglect random changes in the droplet’s 
velocity. When l/A $ At 4 t,, this is not true, and on each time-step one must 
compute random changes to both the droplet’s physical location and velocity. We 
give the numerical algorithm that is used under general circumstances in the KIVA 
program to compute the turbulent displacement of a droplet and compare 
theoretical distributions of droplet turbulent position change with calculated 
distributions using At/t, = 0.1 and At/td= 10.0. 

II. THE DISTRIBUTIONS OF DROPLET TURBULENT VELOCITY 
AND POSITION CHANGE 

A. The Distribution of Turbulent Velocity Changes 

We want to solve the Langevin [S] equation (3), where each component of u’ is 
distributed according to (1). Since A is constant, formal solution of (3) gives 

for each component o of the drop velocity. In (7) u. is the initial droplet velocity, 
whose value may also be governed by a distribution function. Equation (7) says 
that the probability distribution of the quantity on the left-hand side equals that of 
the right. With w’ equal to the change in droplet velocity because of turbulence 
interactions, 

wf = e-A~ 
s 

’ eAI’~Ut dt’, 
(8) 

0 

we seek to find the probability P(w’) dw’ that w’ lies in (w’, w’ + dw’). 
Since u’ is held constant for turbulence correlation time td, we have for 

Nt,<tc(N+l)t,, 

uIN+ le A(r’ -‘)A dt’ 

where 

wk( t) = e - Af( 1 - e -“‘d) eAkfd& 

(9) 

and u; is the gas velocity fluctuation when (k - 1) t,< t c kt,. Since the occurence 
of u; is Gaussian with deviation 6, the occurrence of wk is Gaussian with deviation 

e - Ar( 1 _ e --Afd) eAkfdg. 
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We now use the result that if P(wi) and P(wz) are Gaussian with deviations c1 and 
cr2 and if w1 and w2 are uncorrelated, then P(w, + w2) is Gaussian with deviation 
dm [9]. Applying this result to Eq. (9) shows w’ is Gaussian with deviation 
a,,,,, where 

e2Atdf+’ _ 1 

a -2Ar(eArd- 1) eA,d+ 1 + (1 -e .,,-O,} ,3. (10) 

This is the formula we seek concerning the distribution of drop velocity changes. 
We can check that (10) is correct in two limiting cases. When At % 1 and At,B 1, 

it is seen from (10) that o,,,, x cr except for short periods of time when 

Nt, < t < Nt, + l/A. 

In this limit the droplets are tightly coupled to the gas and, accordingly, the 
distributions of droplet and gas velocities coincide. 

In the second limit when both t and td are small compared to the droplet drag 
time l/A, we obtain from (10) 

aZ,,=A2t;a2 {N+(N-$}a (11) 

With t/td= N, this reduces to 

a,,,, = At, o fid, (12) 

which is the result one naively obtains by assuming the fluctuating velocity follows 
a random walk with deviation At,a each step for N = t/td steps. The result (12) can 
be misleading. It is only valid when t 4 l/A. When t + co, c,,,, given by (12) grows 
without bound, but Eq. (10) shows a,,,, is bounded by a. In fact, one can show that 
a’,, is less than the expression obtained from (10) by substituting t = Nt,: 

a’,, < 
1 -e-A’d 
l+e-Atd(1-e-2A’) a2- 1 

Thus, as one would expect, the width of the distribution of droplet random 
velocities cannot exceed the width of the distribution of gas random velocities. 

Equation (9) can be put in a more compact form that will be useful later. By 
defining 

Y(t)= t i 
0 t<O 

t > 0, 

Equation (9) can be rewritten 

w’(t)= f {e-Al[t-kfd]_e-A~CI-(k--l)ldl) & 

k=l 
(13) 
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B. The Distribution of Turbulent Position Changes 

We now derive the distribution of drop position changes. The random displace- 
ment of a droplet is given by 

x’(t) = j”; w’( t’) dt’. (14) 

Substituting (13) into (14) and using 

(15) 

gives 

x’(t)= f 

k=l 

‘vlt-(k-l)t,,- yCt-kt,,+f {,~A~‘C~--(k-l~~d~_,-A’P~~-k~d~ 
I] 4. 

(17) 

Thus if Nt, < t < (N+ 1) t,, by definition of Y we have 

N 

x’(t)= 1 t,+fr”“*“)(e~“‘d- 1) u; 
k=l C 1 

eA(Nrdp r) _ 1 

A 1 4v+1. (18) 

Applying the law for the sum of uncorrelated Gaussian variables [9], we obtain for 
the variance of x’ 

02, A2t2N- 2AtdecAr(eANrd- 1) 1 - e-A*d = + 
1 +e-A’de 

-2At 2ANld 
(e -1) 

+[A(t-Nt,)-l+e A(Nfd- 0,2} fi. (19) 

We can derive from (19) an interesting result concerning the asymptotic value of 
o$ for large times. When t B t,, one can show that ~2, is asymptotic to the 
expression obtained by replacing N in Eq. (19) with t/t,; that is, 

2 
CT,. - A2t,t-2AtJl -epA’)+: ,:I:::(1 -ed2A’)] $. (20) 

If in addition At 9 1, one can use (20) to show that 

o;r - a2tt,. (21) 

The interesting and perhaps puzzling feature of this result is that the drag time l/A 
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does not appear in it. One might naively expect ox, to increase with increasing A. 
This is in contrast to the asymptotic behavior of o$, for which one can show from 
(10) that 

cJw’- l -e-A’d 
2 

1 + CAfd fJ2, (22) 

when t = Nt,. As one would intuitively expect, the width of the velocity distribution 
increases with increasing A-that is, as the drops become more tightly coupled to 
the gas. 

One can easily understand Eq. (21) in the limit when A~,B 1. In this case the 
drop follows the gas and the root-mean-square amplitude of its fluctuating velocity 
will be rr. Each turbulence correlation time td the drop will undergo a random 
displacement otd, and after N = t/t, random displacements we have 

Ox’ = at, 

Although the root-mean-square velocity fluctuation decreases with decreasing A, 
crXS does not decrease because the fluctuating drop velocity persists for a longer time 
as A decreases. For example, when At,< 1, Eq. (22) shows that 

This velocity will persist for a time approximately equal to l/A and the drop will 
undergo approximately tA displacements. Thus the random displacement will be 

ox, z (Atd)1’2. l/A JtA z aty2 t’12. 

velocity time per displacement square root of number of 
displacements 

C. Conditional Distribution of Turbulent Position (Velocity) Changes Given that the 
Droplet’s Turbulent Velocity (Position) Change is Known 

Another question that arises in the next section of this report is given that a 
droplet’s random displacement at time t is xb, what is the probability distribution 
of its random velocity w’? The question can also be reversed: given that a droplet’s 
random velocity component is WA, what is the distribution of its random displace- 
ment x’? We answer the second question. The first question can be answered using 
the same approach. 

First we introduce some notation. From Eqs. (13) and (15) we have for the 
random velocity w’ and position x’ of a droplet, 

m 
w’= C aku; 

k=l 
(23) 
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and 

where 

and 

x’= ‘f b,u;, 
k=l 

(24) 

b,(t)=~[t-(k-l)I,1-~[1-kf~]-fa,(r)=~’a,(t’)dt’. (26) 
0 

We decompose x’ into two terms: 

X’=~xCakU;+C(bk-~xak)U;=Xb+Xb, 
k k 

(27) 

where 

(28) 

This value of 1, is chosen so that XL and xb are statistically independent random 
variables. To see that this is so, we first show they are uncorrelated: 

=A, C (akbj- &&aj) t&u; 
kj 

= 0. 

We also know XL and XL are jointly normal, since they are linear combinations of 
independent Gaussian variables [9]. The statistical independence of xb and XL then 
follows from the facts that they are jointly normal and uncorrelated [9]. 

Let us now return to our original question. Assume the random velocities are 
such that Ck ak& = wb. What is the probability distribution of x’? By Eq. (27) and 
the statistical independence of x2 and XL, 

x’=1,wb+x;, (29) 
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where 

= c (b: - 2&akbk + A;U:)a* 
k 

c b2 _ 2 (ck “d’k)* + (Ck akbk)* 

;,f,e(~;;;f2,a2 
Ck ‘: 1 a2 

k 

(30) 

Thus the occurence of x’ is Gaussian with mean value 1,~; and variance 
af, - A$ai,. Similarly it can be shown that if the u; are such that xb = Ck b,u;, then 
the probability distribution of w’ is Gaussian with mean value A,,,xb and variance 

where 

(31) 

Detailed formulas for 

and 

f b;=!t$ 
k=l 

are given in (10) and (19). One can show using (25) and (26) that 

f’ akbk= td[e-A(‘-Nfd)-e--A’] + (t-Ntd)[l -ePACrPNNtd)] -f kzl a: (32) 
k=l 

for times t such that Nt, < t < (N + 1 )td. 

D. Neglect of Turbulent Velocity Changes in Numerical Calculations 

In numerical calculations we are primarily interested in predicting accurately the 
turbulent displacement of a droplet in physical space after each passage of time 
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t= At, where At is the computational time-step. A natural question to ask is when 
can one ignore turbulent changes in velocity space when calculating a droplet’s 
turbulent displacement in physical space. 

It turns out that although one can ignore turbulent velocity changes in the limit 
of very large time-steps, in general one must include them for accuracy. From 
Eq. (30) it is necessary and sufficient to have Ltai, 6 r~f, in order to ignore 
turbulent velocity changes. One easily shows this condition is equivalent to the 
condition 

(33) 

Equation (33) is a very complicated constraint on the times t, t,, and l/A, but we 
can show that when t B td and t 9 l/A, then (33) is satisfied. First one shows that 
when At B 1, 

is bounded below by 

1 - e-A’d 

2 

and 

1 d’k 
k=l 

is bounded above by td. Since (21) shows that 

k=l 

for t 9 t, and At 9 1, we have 

(34) 

The requirement that t $1/A is necessary above. That is, if At 6 1 and t % td, 
then one can show that constraint (33) fails. This is the case when we have a very 
large droplet whose drag time is long compared to the computational time-step, 
which is in turn long compared to the turbulence time scale. 
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III. NUMERICAL CONSIDERATIONS AND COMPUTATIONAL EXAMPLES 

The computer program KIVA [2] aims to solve such problems as the motion of 
an ensemble of spray droplets in a turbulent gas. For these applications, we must 
solve an equation of the form 

af ~+v;(fv)+v”. f $ =o, 
( > 

(35) 

where f is the probability distribution of the droplets and dv/dt is given by (3). The 
function f is defined so that f (x, v, r, t) dx dv dr is the probable number of drops in 
the spatial interval (x, x + dx) with velocities in the range (v, v + dv) and radii in 
the interval (r, r + dr) at time t. In the spray literature [3], Eq. (35) is known as the 
spray equation and can be considerably more complicated when vaporization, 
collisions, or droplet breakup must be taken into consideration. A rigorous 
derivation [lo] of (32) reveals that because dv/dt has a distribution of values, 
diffusion-like terms will arise also on the right-hand side of Eq. (35). To derive the 
exact forms of these terms, would be interesting but beyond the scope of this work. 
If the gas velocity u, drag function A, turbulent kinetic energy Q, and turbulent time 
scale td were all constant, then Eq. (35) could be solved analytically using the 
methods of the previous section. In practice these quantities vary in time, and thus 
(35) must be solved numerically. In this section we tell how (35) is solved numeri- 
cally in KIVA. 

Among the many methods [lo] for solving (35), the stochastic particle method 
of Dukowicz [ 1 ] has become widely used for spray applications. In this method the 
spray is represented by an ensemble of computational particles, each particle 
representing a number of drops NP with identical location xP, velocity vP, and 
radius rP. The drops move relative to a computational mesh on which gas phase 
properties II, Q, and td are calculated. The time-dependent solution is advanced 
through a sequence of time-steps At, using finite difference approximations to (3) 
to solve for the particle position x.;+’ and velocities vi+ ’ at time P+’ = t” + At. 
The approximate distribution function f is obtained from the formula 

f(x, v, r, t”+‘) Ax Av Ar=x Np, 
P 

(36) 

where the summation is over all computational particles with positions x;+ ’ in the 
interval (x, x + Ax) velocities v;+ ’ in the ‘interval (v, v + Av), and radii in the 
interval (r, r + Ar) at time t”+ ’ and where the space, velocity, and radius increments 
are small compared to the scales for change in f but large enough to contain many 
computational particles. 

For each particle we choose one of two numerical procedures for updating that 
particle position and velocity. The choice depends on the relative magnitudes of At 
and td. When At < t,, which is often the case, the most convenient method for 
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finding xi+ ’ and vi+ ’ is to solve (3) directly by finite difference approximations. In 
KIVA we use the approximations 

V 
n+l 

- v” 

At 
p=A;(U;+l+u;-V;+l)+g 

and 

where II;+ ’ is the advanced-time gas velocity at the location of the particle. The gas 
turbulent velocity uI, is held fixed for a number of computational cycles N such that 

(N-l)At<t,<NAt, 

where td is the local turbulence time. 
When At > td, we make the assumptions of and use the results of the previous 

section. Since we cannot assume that At is much larger than the droplet drag 
time l/A, we must add random changes to both the droplet’s position and velocity. 
The particle velocity and position are updated using 

V 
n+l 

-vy” 

At 
‘=A,(u,+l--v,il)+g+; 

and 

X n+l -x” X’ 

At 
p=v;+z’ (4) 

where w’ and x’ are turbulent velocity and position changes that are calculated as 
follows. We first calculate 

and 

y=Ca,b,=t,(l-e-Ad’)--. 
A 

These formulas are obtained from Eqs. (lo), (19), and (32) by substituting 
At = Nt,. Each component w’ of w’ is then chosen randomly from a Gaussian 
distribution with variance cr2 - ,+,, - aa’. The scalar I, is obtained from A, = y/a, and 
then the random displacement x’ in each coordinate direction is calculated from 
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FIG. 1. Theoretical and calculated (IV,= 500, Af = 0.1) variances in the distributions of drop 
position. 

x’ = &.w’ + xi where XL is chosen randomly from a Gaussian with variance 
02, = (/? - 12pc+J*. 

? o confirm both the theory and the numerical implementation of it, we 
performed calculations with KIVA in which a large number of droplets were 
initially placed in the center of a large cubical computational cell. The physical 
parameters were gas velocity u = 0, gravity g = 0, standard deviation of gas velocity 
fluctuations c = 1.0, turbulence correlation time td= 1.0, and drag function A = 0.5. 
Thus the sole mechanism for droplet motion was the action of turbulent fluctua- 
tions on them. We varied the computational time-step dt and number of droplets 
and monitored the width of the computed droplet distribution of positions. 

TIME 

FIG. 2. Theoretical and calculated (N, = 1000, AI = 0.1) variances in the distributions of drop 
position. 
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FIG. 3. Calculated (N, = 1000, At = 0.1) drop positions at times t = 10.0 (a), 30.0 (b), and 50.0 (c). 
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FIG. 4. Theoretical and calculated (IV, = 500, At = 10.0) variances in the distributions of drop 
position. 

Figure 1 shows the theoretical (Eq. (19)) and calculated variance in the droplet 
position distribution when 500 droplets were used and the time-step dt was 0.1. The 
two curves follow each other closely until a time of 10.0, after which they slowly 
drift apart. At t = 50.0, the relative difference between the calculated and theoretical 
variance is 13%. It was suspected that this error was a statistical error and could 
be reduced by increasing the number of droplets. Figure 2 shows the result of using 
1000 computational droplets. The two curves now closely follow each other until 
t = 10.0, and the relative error at t = 50.0 is only 6.5 %. 

Figure 3 shows plots of the computed droplet positions at times t = 10.0, 30.0, 
and 50.0 for the calculation with 1000 droplets. It is seen that the dispersion of the 
droplets is isotropic. 

FIG. 5. Theoretical and calculated (ignoring dispersion of drop velocities) variances in the distribu- 
tions of drop position. 
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To test the algorithm for dispersing droplets when At > id, we performed a 
calculation with At = 10.0. Figure 4 displays the resulting excellent agreement 
between calculation and theory. 

To show the errors one can make by ignoring droplet dispersion in velocity space 
we performed a calculation with At = 10.0 and in which no random changes were 
added to the droplet velocities. Random position changes were chosen on each 
time-step from Eq. (20) with t = At. As expected, the distribution of droplet posi- 
tions has a computed variance that is approximately linear in time and agrees with 
theory only at t = At = 10.0. At t = 50.0, the calculated variance is 26 % below the 
theoretical value. This error is not reduced when the number of droplets is 
increased. Thus, by ignoring dispersion of droplet velocities, one can have large 
errors in the turbulent dispersion of droplet positions even when A At is as large 
as 5.0. 
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